3.325 \(\int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx\)

Optimal. Leaf size=176 \[ -\frac {5 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 a^2 d (\sec (c+d x)+1)}+\frac {4 \sin (c+d x) \sqrt {\sec (c+d x)}}{a^2 d}-\frac {5 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a^2 d}-\frac {4 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}-\frac {\sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{3 d (a \sec (c+d x)+a)^2} \]

[Out]

-5/3*sec(d*x+c)^(3/2)*sin(d*x+c)/a^2/d/(1+sec(d*x+c))-1/3*sec(d*x+c)^(5/2)*sin(d*x+c)/d/(a+a*sec(d*x+c))^2+4*s
in(d*x+c)*sec(d*x+c)^(1/2)/a^2/d-4*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c
),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a^2/d-5/3*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*Ellipti
cF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a^2/d

________________________________________________________________________________________

Rubi [A]  time = 0.25, antiderivative size = 176, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.348, Rules used = {3238, 3816, 4019, 3787, 3771, 2641, 3768, 2639} \[ -\frac {5 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 a^2 d (\sec (c+d x)+1)}+\frac {4 \sin (c+d x) \sqrt {\sec (c+d x)}}{a^2 d}-\frac {5 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a^2 d}-\frac {4 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}-\frac {\sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{3 d (a \sec (c+d x)+a)^2} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^(3/2)/(a + a*Cos[c + d*x])^2,x]

[Out]

(-4*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a^2*d) - (5*Sqrt[Cos[c + d*x]]*EllipticF
[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*a^2*d) + (4*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(a^2*d) - (5*Sec[c + d*x]
^(3/2)*Sin[c + d*x])/(3*a^2*d*(1 + Sec[c + d*x])) - (Sec[c + d*x]^(5/2)*Sin[c + d*x])/(3*d*(a + a*Sec[c + d*x]
)^2)

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 3238

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_.))^(p_.), x_Symbol] :> Dist
[d^(n*p), Int[(d*Csc[e + f*x])^(m - n*p)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x
] &&  !IntegerQ[m] && IntegersQ[n, p]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3787

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3816

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(d^2*
Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 2))/(f*(2*m + 1)), x] + Dist[d^2/(a*b*(2*m + 1)), In
t[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 2)*(b*(n - 2) + a*(m - n + 2)*Csc[e + f*x]), x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1] && GtQ[n, 2] && (IntegersQ[2*m, 2*n] || IntegerQ[m]
)

Rule 4019

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(d*(A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 1))/
(a*f*(2*m + 1)), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1)*Simp[A
*(a*d*(n - 1)) - B*(b*d*(n - 1)) - d*(a*B*(m - n + 1) + A*b*(m + n))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b,
d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] && GtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx &=\int \frac {\sec ^{\frac {7}{2}}(c+d x)}{(a+a \sec (c+d x))^2} \, dx\\ &=-\frac {\sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}-\frac {\int \frac {\sec ^{\frac {3}{2}}(c+d x) \left (\frac {3 a}{2}-\frac {7}{2} a \sec (c+d x)\right )}{a+a \sec (c+d x)} \, dx}{3 a^2}\\ &=-\frac {5 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a^2 d (1+\sec (c+d x))}-\frac {\sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}-\frac {\int \sqrt {\sec (c+d x)} \left (\frac {5 a^2}{2}-6 a^2 \sec (c+d x)\right ) \, dx}{3 a^4}\\ &=-\frac {5 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a^2 d (1+\sec (c+d x))}-\frac {\sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}-\frac {5 \int \sqrt {\sec (c+d x)} \, dx}{6 a^2}+\frac {2 \int \sec ^{\frac {3}{2}}(c+d x) \, dx}{a^2}\\ &=\frac {4 \sqrt {\sec (c+d x)} \sin (c+d x)}{a^2 d}-\frac {5 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a^2 d (1+\sec (c+d x))}-\frac {\sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}-\frac {2 \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx}{a^2}-\frac {\left (5 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{6 a^2}\\ &=-\frac {5 \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{3 a^2 d}+\frac {4 \sqrt {\sec (c+d x)} \sin (c+d x)}{a^2 d}-\frac {5 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a^2 d (1+\sec (c+d x))}-\frac {\sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}-\frac {\left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{a^2}\\ &=-\frac {4 \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a^2 d}-\frac {5 \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{3 a^2 d}+\frac {4 \sqrt {\sec (c+d x)} \sin (c+d x)}{a^2 d}-\frac {5 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a^2 d (1+\sec (c+d x))}-\frac {\sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 1.30, size = 252, normalized size = 1.43 \[ -\frac {e^{-i d x} \cos \left (\frac {1}{2} (c+d x)\right ) \sqrt {\sec (c+d x)} \left (\cos \left (\frac {1}{2} (c+3 d x)\right )+i \sin \left (\frac {1}{2} (c+3 d x)\right )\right ) \left (-4 i e^{-i (c+d x)} \sqrt {1+e^{2 i (c+d x)}} \left (1+e^{i (c+d x)}\right )^3 \, _2F_1\left (\frac {1}{2},\frac {3}{4};\frac {7}{4};-e^{2 i (c+d x)}\right )+i (12 i \sin (c+d x)+7 i \sin (2 (c+d x))+50 \cos (c+d x)+17 \cos (2 (c+d x))+29)+40 \cos ^3\left (\frac {1}{2} (c+d x)\right ) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \left (\cos \left (\frac {1}{2} (c+d x)\right )-i \sin \left (\frac {1}{2} (c+d x)\right )\right )\right )}{6 a^2 d (\cos (c+d x)+1)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^(3/2)/(a + a*Cos[c + d*x])^2,x]

[Out]

-1/6*(Cos[(c + d*x)/2]*Sqrt[Sec[c + d*x]]*(((-4*I)*(1 + E^(I*(c + d*x)))^3*Sqrt[1 + E^((2*I)*(c + d*x))]*Hyper
geometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))])/E^(I*(c + d*x)) + 40*Cos[(c + d*x)/2]^3*Sqrt[Cos[c + d*x]]*
EllipticF[(c + d*x)/2, 2]*(Cos[(c + d*x)/2] - I*Sin[(c + d*x)/2]) + I*(29 + 50*Cos[c + d*x] + 17*Cos[2*(c + d*
x)] + (12*I)*Sin[c + d*x] + (7*I)*Sin[2*(c + d*x)]))*(Cos[(c + 3*d*x)/2] + I*Sin[(c + 3*d*x)/2]))/(a^2*d*E^(I*
d*x)*(1 + Cos[c + d*x])^2)

________________________________________________________________________________________

fricas [F]  time = 1.02, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sec \left (d x + c\right )^{\frac {3}{2}}}{a^{2} \cos \left (d x + c\right )^{2} + 2 \, a^{2} \cos \left (d x + c\right ) + a^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(3/2)/(a+a*cos(d*x+c))^2,x, algorithm="fricas")

[Out]

integral(sec(d*x + c)^(3/2)/(a^2*cos(d*x + c)^2 + 2*a^2*cos(d*x + c) + a^2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sec \left (d x + c\right )^{\frac {3}{2}}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(3/2)/(a+a*cos(d*x+c))^2,x, algorithm="giac")

[Out]

integrate(sec(d*x + c)^(3/2)/(a*cos(d*x + c) + a)^2, x)

________________________________________________________________________________________

maple [A]  time = 0.75, size = 405, normalized size = 2.30 \[ -\frac {2 \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (5 \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-12 \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-2 \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (5 \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-12 \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-48 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+86 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-37 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{6 a^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^(3/2)/(a+a*cos(d*x+c))^2,x)

[Out]

-1/6*(2*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2
*c)^2)^(1/2)*(5*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-12*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))*cos(1/2*d*x+1/
2*c)*sin(1/2*d*x+1/2*c)^2-2*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1
/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(5*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-12*EllipticE(cos(1/2*d*x+1/2*c),2^(1
/2)))*cos(1/2*d*x+1/2*c)-48*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^6+86*(-2*s
in(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^4-37*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1
/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^2)/a^2/cos(1/2*d*x+1/2*c)^3/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(
1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sec \left (d x + c\right )^{\frac {3}{2}}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(3/2)/(a+a*cos(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate(sec(d*x + c)^(3/2)/(a*cos(d*x + c) + a)^2, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}}{{\left (a+a\,\cos \left (c+d\,x\right )\right )}^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1/cos(c + d*x))^(3/2)/(a + a*cos(c + d*x))^2,x)

[Out]

int((1/cos(c + d*x))^(3/2)/(a + a*cos(c + d*x))^2, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {\int \frac {\sec ^{\frac {3}{2}}{\left (c + d x \right )}}{\cos ^{2}{\left (c + d x \right )} + 2 \cos {\left (c + d x \right )} + 1}\, dx}{a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**(3/2)/(a+a*cos(d*x+c))**2,x)

[Out]

Integral(sec(c + d*x)**(3/2)/(cos(c + d*x)**2 + 2*cos(c + d*x) + 1), x)/a**2

________________________________________________________________________________________